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This paper contains a link between Probability Proportional to Size (PPS)
sampling and interpolations of the classical Jensen inequality. We show that these
interpolating inequalities are, in fact, special cases of the conditional Jensen
inequality when applied over an appropriate probability space. We provide a few
examples dealing with divided differences, convex functions over linear spaces,
approximation operators, and sampling with and without replacement. � 1998

Academic Press

1. INTRODUCTION

Let (S, F, P) be a probability space along with a sequence of sub-sigma
fields Fn$Fn+1 , and a sequence of random variables !n , n=1, 2, ... . If for
each n, !n is Fn measurable, E |!n | is finite, and E(!n | Fn+1)=a.s.!n+1 , then
[!n , Fn , n�1] is called a reverse martingale. R. A. Khan [18, 19] used
such a probabilistic structure to provide elegant proofs of number of results
concerning monotonic convergence of approximation operators. The main
argument about the monotonicity of approximation operators uses the
conditional form of Jensen's inequality when the function begin approxi-
mated is convex.

A rich class of reverse martingales is obtained by considering the U-statistics
of Hoeffding [15]. That is, if Y1 , Y2 , ... is a sequence of independent and
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identically distributed (iid) random variables and k is some fixed positive
integer, the random variables

Uk, n :=
1

\n
k+

:
1�i1<i2< } } } <ik�n

,(Yi1
, Yi2

, ..., Yik
), n=k, k+1, ...,

are called U-statistics where , is a real symmetric function on Rk. If ,
happens to be convex as well, then Uk, n(Y1 , ..., Yn) becomes a Schur
convex function and this view leads to some inequalities. Indeed, by using
this point of view, the first proof of monotonic convergence of the
classical Feller operator (which includes the usual Bernstein polynomials,
Szasz, gamma, and Weierstrass operators) was provided by Marshall and
Proschan [21]. If Fn is the smallest sigma algebra generated by
(Uk, n , Uk, n+1 , ...), then it is well known that [Uk, n , Fn , n=k, k+1, ...]
forms a reverse martingale when E |,(Y1 , Y2 , ..., Yk)|<�. Using this
reverse martingale for a fixed k, and n=k, k+1, ..., R. A. Khan [19]
recently provided a number of results of monotonic convergence of
approximation operators.

In this paper, we complement some of the results of R. A. Khan by con-
sidering expressions similar to Uk, n ; however, we fix n and allow k to vary
from 1 to n. We will provide appropriate probability spaces so that the
resulting structures have reverse martingale type properties over linear
spaces. More precisely, we will provide a probability space (S, F, P) along
with a sequence of finite sub-sigma fields [Fk], and a sequence of random
vectors [!k] taking values in a linear space L. And for each k, !k has the
properties that it is Fk measurable, and E(!k | Fk+1)=a.s.!k+1. This reverse
martingale type of structure will be used to provide, among other things,
some refinements of Jensen's inequality, and improvements of some existing
inequalities in analysis and approximation theory. We further provide a
link to the subject of Probability Proportional to Size (PPS) sampling of
statistics. This, in turn, shows how to provide an infinite variety of
refinements of the classical Jensen's inequality.

The next section provides some methods of constructing probability
spaces over which functions similar to Uk, n will have a reverse martingale
type of structure along with some refinements of the Jensen inequality.
Section 3 provides some links with PPS sampling. Section 4 lists some
refinements of known inequalities in analysis which become special cases of
the results in the earlier sections. The last section gives refinements of
monotonic convergence of a number of univariate and multivariate classi-
cal approximation operators.
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2. INTERPOLATIONS OF JENSEN'S INEQUALITY

In this section we will take [x1 , x2 , ..., xn]�K�L where L is a linear
space, K is a convex set, and n is a fixed positive integer. Let Q :=[ qij] be
an n_n stochastic matrix with diagonal terms equal to zero, and let
P :=( p1 , ..., pn) consist of positive numbers adding up to one. For any real-
valued function f over K, we define

fk, n(x, P, Q) :=
1

\n&2
k&2+

:
Ak
\ :

i, j # Ak

piqij+ f \
�i, j # Ak

xi pi qij

�i, j # Ak
pi qij + ,

where the summation is over all subsets Ak of size k taken from
[1, 2, ..., n]. To avoid division by zero, we will assume throughout that all
�i, j # Ak

piqij>0. When f is a convex function over K, the classical Jensen
inequality gives that

:
n

j=1

pj f (xj)�f \ :
n

j=1

pjxj+ .

Our first result shows how to provide a variety of refinements of this
inequality.

Theorem 1. Let f be a real-valued convex function over K and let xi # K,
i=1, 2, ..., n, be fixed. Then for any probability vector P and uniformly over
all n_n stochastic matrices Q as defined above, we have

:
n

j=1

pj f (xj)�fk, n(x, P, Q)�fk+1, n(x, P, Q)

�f \ :
n

j=1

pj xj+ , k=2, 3, ..., n&1.

Proof. Consider a probability space 0 consisting of |=([i], [i1 , ..., ik],
[ j1 , ..., jk+1]) where i, i1 , ..., ik , j1 , ..., jk+1 are integers lying in the set
[1, 2, ..., n] with the property that [i]�[i1 , ..., ik]�[ j1 , ..., jk+1]. Let Ak

be a subset of size k from the set of first n positive integers. For any given
subsets A1�Ak�Ak+1 with A1=[i] we define a probability meausre over
the subsets of 0 by letting

P([(A1 , Ak , Ak+1)]) :=
pi

(n&k) \n&2
k&2+

:
j # Ak

qij .
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Define a random element X : 0 � K by X(|) :=xi , where i is the element
of the first set in |. Also define random elements Zk(|) and Zk+1(|) to
be the second and the third sets in |, respectively. For a given subset Ak

containing i, we have

P(X=xi | Zk=Ak)=
pi �j # Ak

qij

�l, j # Ak
plqlj

, P(Zk=Ak)=
�l, j # Ak

pl qlj

\n&2
k&2+

.

Therefore, by the convexity of f, or the conditional form of the Jensen
inequality [10], we have

:
n

i=1

pi f (xi)=Ef (X )�Ef (E(X | Zk))

=
1

\n&2
k&2+

:
Ak
\ :

i, j # Ak

pi qij+ f \
�i, j # Ak

xi piqij

�i, j # Ak
piqij +

=fk, n(x, P, Q).

Now note that for any natural number i�n, and any subset Ak+1 con-
taining i, we have

:
Ak : i # Ak�Ak+1

P(X=xi | Zk=Ak) P(Zk=Ak | Zk+1=Ak+1)

=
pi

k&1
1

�l, j # Ak+1
pl qlj

:
Ak : i # Ak�Ak+1

:
j # Ak

qij

=
pi

k&1
1

�l, j # Ak+1
pl qlj

:
j # Ak+1

qij \k+1&2
k&2 +

=P(X=xi | Zk+1=Ak+1).

Therefore, we have

E[E(X | Zk) | Zk+1=Ak+1]

= :
Ak : Ak�Ak+1

E(X | Zk=Ak) P(Zk=Ak | Zk+1=Ak+1)

= :
n

i=1

xi :
Ak : i # Ak�Ak+1

P(X=xi | Zk=Ak) P(Zk=Ak | Zk+1=Ak+1)

= :
n

i=1

xiP(X=xi | Zk+1=Ak+1)=E[X | Zk+1=Ak+1].
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Applying the conditional Jensen inequality one more time gives that

fk, n(x, P, Q)=Ef (E(X | Zk))�Ef (E[E(X | Zk) | Zk+1])

=Ef (E(X | Zk+1))=fk+1, n(x, P, Q).

Another application of Jensen's inequality on the last term completes the
proof. K

A number of implications of this result will be mentioned in the last two
sections. By using the concepts of sampling theory of statistics, one can
extend this result, as we show in the next section.

3. A LINK WITH PPS SAMPLING

In Sampling Theory, the objective is to select a portion of the population
having certain properties. In Probability Proportional to Size sampling, we
have a population consisting of n units and we are provided positive
numbers pi , i=1, 2, ..., n, which represent the ``importance'' (or ``size'') of
each of the population units xi , i=1, 2, ..., n. The aim is to select a subset
of size k (1�k<n), so that we may estimate the population total �n

i=1 xi

by using the information provided by the sample. It is known, however,
that there does not exist a sampling scheme which uniformly (over all pop-
ulations) minimizes the variance when estimating the population total. This
leads to different sampling schemes each having its own advantages over
the others. To date, over one-hundred sampling schemes have been devised
(see [5, 6, 8]). Most of these sampling schemes give rise to probability
spaces that can be used to enhance our Theorem 1.

More precisely, over the set [x1 , x2 , ..., xn], we start to select the
elements one after the other without replacement. With the probability dis-
tribution P we select the first element. If xi is selected on the first draw, the
second element is selected by the distribution given by the i th row of the
stochastic matrix Q. If we select the remaining elements with equal
probabilities, we get the probability space of Theorem 1. In this case,

Uk, n :=E(X | Zk), k=2, 3, ..., n&1,

forms a reverse martingale type of structure which leads to the result. We
could introduce different non-uniform distributions over the subsequent
selections to enhance Theorem 1. We state this result without proof (which
is essentially to that of Theorem 1 however considerably messy in notation)
as follows.
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Theorem 2. Let K be a convex subset of a linear space and let xi # K,
i=1, 2, ..., n, be given. Let P be a probability measure on the permutations
of the first n positive integers (representing the draw by draw PPS selection)
so that the probability of any permutation |=(i1 , i2 , ..., in), is

P(|)=
pi1

qi1 , i2
ri1 , i2 , i3

(n&3)!
,

where pi are positive numbers adding up to one, Q=[qij] is a stochastic
matrix with zero diagonal, and for each fixed i and j, the numbers ri, j, l are
non-negative and add up to one and become zero if any two of the subscripts
become equal. Let X(|)=xi and Zk(|)=Ak where the first element of | is
i and the first k elements of | make up the set Ak . Then

Uk, n :=E(X | Zk), k=2, 3, ..., n&1,

forms a reverse martingale type of structure provided that conditional expec-
tations are well defined. And for any convex function f over K, we have

:
n

j=1

pj f (xj)�Ef (Uk, n)�Ef (Uk+1, n)�f \ :
n

j=1

pjxj+ , k=3, ..., n&1.

Furthermore, the above inequalities hold for k=2 provided ri, j, l is symmetric
in its first two subscripts for each fixed l.

Remark. We may carry the above argument further and consider the
probability measure

P(|)=pi1
qi1 , i2

`
n

l=3

rl
il
(i1 , i2 , ..., il&1),

where rl
il

is a symmetric function of its l&1 coordinates. This will again
provide refinements of Jensen's inequality. For the general case, any prob-
ability measure over the set of permutations satisfying the property,

P(X=xi | Zk+1=Bk+1)

= :
Ak : i # Ak/Bk+1

P(X=xi | Zk=Ak) P(Zk=Ak | Zk+1=Bk+1),

will give rise to refinements of the Jensen inequality. Some special cases are
provided in the next section.
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4. SOME INEQUALITIES IN ANALYSIS

In the following we provide only a few examples to show the uses of
these inequalities. Our first application deals with convex functions (such
as sublinear functionals) over a linear space.

Theorem 3. Let f, P, and Q be as given in Theorem 1 and let the range
of f be an interval I. Let , : I � R be a non-decreasing and convex function.
Let ,k, n be defined either by

,k, n :=
1

\n&2
k&2+

:
Ak
\ :

i, j # Ak

piqij+ , b f \
�i, j # Ak

xi pi qij

�i, j # Ak
piqij + ,

or defined by

,k, n :=, \
1

\n&2
k&2+

:
Ak
\ :

i, j # Ak

piqij+ f \
�i, j # Ak

xi piqij

�i, j # Ak
piqij ++ .

Then, in both cases, we have

:
n

k=1

pk,( f (xk))�,k, n�,k+1, n�, b f \ :
n

k=1

pk xk+ , k=2, 3, ..., n&1.

Proof. The first case is a direct consequence of Theorem 1 since , b f is
convex. For the second case, let X and Zk be as defined in the proof of
Theorem 1:

E(, b f (X ))�E(,E( f (X ) | Zk))

�,(Ef (EX | Zk))=,( fk, n(x, P, Q))

�,( fk+1, n(x, P, Q))�, b f (E(X )). K

Remark. In particular, when Q has constant rows consisting of
1�(n&1) in the off-diagonals and zero in the diagonal then the first form
of ,k, n reduces to

,k, n(x, P)=
1

\n&1
k&1+

:
Ak
\ :

i # Ak

pi+ , b f \
�i # Ak

xi pi

�i # Ak
pi + ,

k=1, 2, ..., n&1. (1)
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When f is the usual norm of a normed linear space in (1), we get
refinements of an inequality as given in [24, p. 133, Theorem 4.46].
Furthermore, if , is the identity, we get

:
n

i=1

pi f (xi)�fk, n(x, p)�fk+1, n(x, p)�f \ :
n

i=1

pixi+ , k=1, 2, ..., n&1,

(2)

where

fk, n(x, p)

:=
1

\n&1
k&1+

:
1�i1<i2< } } } <ik�n

( pi1
+ } } } +pik

) f \
pi1

xi1
+ } } } +pik

xik

pi1
+ } } } +pik

+ .

(3)

In the language of PPS sampling, this comes out of the fact that the prob-
ability measure P over the set of permutations has the following form. Our
random element Zk , as defined in Section 2, has distribution

P(Zk=[i1 , ..., ik])=
pi1

+ } } } +pik

\n&1
k&1+

.

This happens to be a well-known sampling scheme due to Midzuno [22].
It has been extensively studied (see, for instance, [4, 25, 27]) in the
Sampling Theory literature. Its draw-by-draw version says that we select
the first unit by the probability distribution pi , i=1, 2, ..., n, and then the
remaining units are picked with equal probabilities over the remaining
units one after the after. When the probability vector ( p1 , p2 , ..., pn) is
taken to be uniform, this leads to the following special case:

fk, n(x)�fk+1, n(x), k=1, 2, ..., n&1, (4)

where

fk, n(x) :=
1

\n
k+

:
1�i1<i2< } } } <ik�n

f \1
k

(xi1
+xi2

+ } } } +xik
)+ . (5)

And the corresponding probability measure is known as simple random
sampling without replacement. The second form of ,k, n in Theorem 3 has
similar structure as used by R. A. Khan in [19]; however, k is held fixed
and n is allowed to vary.
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Remark. When K is taken to be the real line, the inequalities in (2)
were directly proved recently in [23] while improving upon the inequalities
(4) which are due to S. Gabler [12]. As pointed out by Gabler, the
inequalities (4) contain the corresponding monotonicity results for the
usual arithmetic and geometric means. It also contains similar inequalities,
such as

1

\n
k+

:
1�i1<i2< } } } <ik�n

`
k

j=1

x&a
ij

�nka; whenever :
n

i=1

xi�1, xi�0, a>0,

which is stated in [20, p. 85]. We should add here that refinements of
Hadamard inequalities are also captured by Theorem 3. These results are
possible due to the fact that for convex function f, fk, n(x) becomes a Schur
convex function. The main results of Gabler, however, dealt with the, so-
called, sequentially convex functions which are defined as follows. We will
use such functions along with inequalities (2) and (4) to get a number of
results in aproximation theory in the next section.

Definition. For a given function f defined over an interval I, if fk, n(x),
k=1, 2, ..., n, as defined in (5), is a convex sequence in k for all n�3, then
f will be called a sequentially convex function.

Remark. Gabler showed that when I=R then a continuous f is sequen-
tially convex if and only if f is twice differentiable and both f and f " are
convex functions. Furthermore, if f is twice differentiable over an interval
I then the convexity of f and f " implies the sequential convexity of f over
I. He also showed that the converse of the last statement may not hold in
general. Now we present a few results concerning divided differences.

For a real-valued function f defined over an interval I, and any distinct
values yi # I, i=0, 1, 2, ..., m, let

Dm(y) :=[ y0 , y1 , ..., ym ; f ], y=( y0 , y1 , ..., ym),

be the m th order divided difference. We say f is m-convex if Dm(y)�0 for
all choices of distinct points yi # I, i=0, 1, 2, ..., m.

Theorem 4. Let x(1), x(2), ..., x(n), be vectors in Im+1=I_I_ } } } _I.
Let f be an (m+2)-convex function over I. For any probability vector P and
n_n stochastic matrix Q as defined in Theorem 1, let

Dk, n(x, P, Q) :=
1

\n&2
k&2+

:
Ak
\ :

i, j # Ak

pi qij+ Dm \
�i, j # Ak

x(i )piqij

�i, j # Ak
pi qij + .
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Then the sequence [Dk, n] is non-increasing in k # [1, 2, ..., n] where

D1, n := :
n

i=1

piDm(x (i)).

Also, let yi # I, i=0, 1, ..., m, be distinct points in I, and let

gk, m :=
1

\m
k +\

m+1
k + k !

:
0�i1<i2< } } } <im+1&k�m

[ yi1
, yi2

, ..., yim+1&k
; f (k)].

Then we have [ y0 , y1 , ..., ym ; f ]�gk, m�gk+1, m , k=1, 2, ..., m&1.

Proof. One need only see that the m th order divided difference of an
(m+2)-convex function is a convex function over Im+1. An application of
Theorem 1 gives the first result. When f is (m+2)-convex, it is m times dif-
ferentiable and, by the Hermite�Gennochi formula, we may write the
divided differences in terms of B-splines as

[ y0 , y1 , ..., ym ; f ]=
1

m!
Ef (m) \ :

m

i=0

yiUi+ ,

where Ui , i=0, 1, 2, ..., m, are uniformly distributed over the standard sim-
plex of degree m. Since, Ui , i=0, 1, 2, ..., m, are non-negative random
variables which almost surely add up to one and f (m) is a convex function,
an application of inequality (2) gives that

[ y0 , y1 , ..., ym ; f ]

�
1

m ! \ m+1&1
m+1&k&1+

E :
Am+1&k

\ :
i # Am+1&k

Ui+ f (m) \
�i # Am+1&k

yiUi

�i # Am+1&k
Ui +

�
1

m ! \m+1&1
m&k&1+

E :
Am&k

\ :
i # Am&k

Ui+ f (m) \
�i # Am&k

yiUi

�i # Am&k
Ui + ,

where �Ak
represents summing over all subsets of size k taken from

[0, 1, 2, ..., m]. Now we use the fact that

\
Ui1

Ui1
+Ui2

+ } } } +Uij

,
Ui2

Ui1
+Ui2

+ } } } +Uij

, ...,
Uij&1

Ui1
+Ui2

+ } } } +Uij
+
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is independent of Ui1
+Ui2

+ } } } +Uij
, and that E(Ui)=1�(m+1). This

gives that

[ y0 , y1 , ..., ym ; f ]

�
m&k+1

m ! \ m
m&k+ (m+1)

:
Am&k+1

Ef (m) \
�i # Am+1&k

yiUi

�i # Am+1&k
Ui +

=
1

k ! \m
k +\

m+1
k +

:
Am&k+1

1
(m&k)!

Ef (m) \
�i # Am+1&k

yiUi

�i # Am+1&k
Ui +=gk, m

�
m&k

m! \m+1&1
m&k&1+ (m+1)

:
Am&k

Ef (m) \
�i # Am&k

yiUi

�i # Am&k
Ui +

=
1

\m+1
k+1 +\

m
k+1+ (k+1)!

:
Am&k

1
(m&k&1)!

Ef (m) \
�i # Am&k

yiUi

�i # Am&k
Ui +

=gk+1, m .

This completes the proof. K

Remark. Theorem 4 has some overlap with the results in [11]. The
point of view of Theorem 4 could partially be carried over to multivariate
B-splines as well. Now we turn our attention towards the monotonicity
results concerning approximation operators of probability type.

5. MONOTONICITY OF APPROXIMATION OPERATORS

In this section we provide a number of results about the monotonic and
convex convergence of classical approximation operators.

Monotonicity of Feller Operators

This example deals with the Weierstrass, Szasz, Bernstein, Gamma,
Baskakov, and many other approximation operators of Feller type [18].
Let f be a real-valued function over an interval I. Let X1 , X2 , ... be a
sequence of identically distributed random variables taking values in I.
Take Sn=X1+ } } } +Xn . Often these random variables are assumed to be
independent. However, it seems that the need for independence can be
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somewhat relaxed while proving the monotonicity property of the Feller
operator. Consider the sequence of functionals

Ln( f ) :=Ef (Sn �n), if for all n, E | f (Sn�n)|<�.

For a list of special cases and general approximation results of Ln , see
[18]. An easy application of inequality (4) when f is convex gives that

f (Sn+1 �(n+1))�
a.s. 1

\n+1
n +

:
1�i1< } } } <in�n+1

f \
Xi1

+ } } } +Xin

n + . (6)

Taking expectations on both sides gives that Ln+1( f )�Ln( f ). The two
benefits one gets by employing this point of view are that we need not
assume the existence of moments nor do we have to assume the mutual
independence of the random variables involved. As a simple application of
this result we get the monotonicity result concerning the Stancu�Bernstein
operators [26] associated with the Polya urn model:

Sn( f, x)=Ef (Sn�n), Sn=X1+X2+ } } } +Xn ,
where

P(Sn=k)=\n
k+

x(k, &:)(1&x)(n&k, &:)

1(n, &:) ,

where x(k, &:)=x(x+:) } } } (x+(k&1) :) for k�1 and x(0, &:)=1. In this
case, the Xi are not mutually independent, but form a sequence of
exchangeable random variables. Inequality (6) shows that Sn( f, x)�
Sn+1( f, x) for any convex f over [0, 1]. We have come to know that the
monotonicity of Bernstein�Stancu operators was also proved by Horova
and Budikova [14] recently; however, they used direct calculations.
M. K. Khan et al. [17] provide some converse results concerning the
monotonicity of operators of probability type. Now we mix inequality (6)
with more information about the function f to obtain sharper results about
the sequence of approximation operators. This is summed up in the following
theorem.

Theorem 5. For the Feller functionals of a convex function f, we have
Ln( f ) is a decreasing sequence in n. Furthermore, if f is sequentially convex
then Ln( f ) is a convex sequence in n.
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Proof. The first part of the result follows by inequality (6) as described
above. Now for the second part, just note that the definition of sequential
convexity implies that

fk&2, n(X1 , X2 , ..., Xn)&2fk&1, n(X1 , X2 , ..., Xn)+fk, n(X1 , X2 , ..., Xn)�
a.s.

0,

(7)

where

fk, n(X1 , X2 , ..., Xn)=
1

\n
k+

:
1�i1<i2< } } } <ik�n

f \
Xi1

+Xi2
+ } } } +Xik

k + .

Replacing k by n in inequality (7), taking expectations, and using the
exchangeability of random variables finishes the proof. K

Remark. For the Bernstein polynomials, there are two results in the
literature which give similar results as our Theorem 5. One is due to Arama$
and Ripianu [3] and the other is due ot Horova [13]. However, both of
these results are obtained after assuming some unnecessary conditions on
f. In [3] the convex function f is assumed to be analytic in [0, 1] having
all derivatives of order two and higher being non-negative. And [13]
assumes that f should be 2, 3, 4, and 5-convex over [0, 1]. By the results
of [12], both of these results are special cases of Theorem 5. We should
remark that, for instance, in the Bernstein polynomials, Bn( f, x), when f is
assumed to be 4-convex, then

Bn+1( f, x)�Bn( f, x)&
_2(x)

n(n+1) _
nx&x

n
,

nx&x+1
n+1

,
nx&x+1

n
; f & ,

where _2(x) is the variance of the Bernoulli random variable X1tB(1, x).
This then gives that

lim
n � �

n2(Bn( f, x)&Bn+1( f, x))=
_2(x) f "(x)

2!
.

These results come from the divided difference representation of
Bn+1( f, x)&Bn( f, x), as first derived in [28] and the fact that when f
is 4-convex then [u, v, w ; f ] is a convex function over the unit cube.
Similar results are now possible by the same argument when applied to
other positive linear operators such as Szasz, Baskakov operators, etc.
Their divided difference representations can be found in [9] and further
references therein. We omit the details.
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Monotonicity of Some Non-Feller Operators

The above results carry over to some non-Feller operators without much
effort. As an example, consider the F operator (also known as the beta
operator, see [16, 29]),

Fm, n( f, x) :=|
�

0

xnun&1

B(m, n)(1+xu)m+n f \ n
mu+ du,

where B(m, n) is the beta function, m, n�1, x>0, and Fm, n( | f |, x)<�. It
can be shown that

Fm, n( f, x)=Ef \nx(X1+ } } } +X2m)
m(Y1+ } } } +Y2n) + ,

where Xi , Yi are iid chi square random variables with one degree of
freedom. Again, let Sn=X1+ } } } +Xn and Tn=Y1+ } } } +Yn . For a con-
vex function f in the domain of the operator, inequality (6) gives that,

f (cS2m+2 �(2m+2))�
a.s. 1

\2m+2
2m +

:
1�i1< } } } <i2m�2m+2

f \
c(Xi1

+ } } } +Xi2m
)

2m + ,

where c=2xn�T2n . Taking expectations gives that Fm+1, n( f, x)�
Fm, n( f, x). When f is sequentially convex then we see that

f2m&4, 2m(x)&2f2m&2, 2m(x)+f2m, 2m(x)�0.

This then implies that Fm, n( f, x) is a convex sequence in m. Hence, we have
proved the following theorem.

Theorem 6. For any convex function, f, in the domain of the F-operators,
we have Fm+1, n( f, x)�Fm, n( f, x). And when f is sequentially convex then

Fm+2, n( f, x)&2Fm+1, n( f, x)+Fm, n( f, x)�0, m, n=1, 2, 3, ... .

Remark. We should remark here that similar ideas can be used to
provide partial monotonicity results for the Schurer versions of Bernstein
and Szasz operators (cf. [2, pp. 338, 341]).

Monotonicity of Operators in Rk

Many of the classical Feller type operators can be generalized to Rk. For
instance, the Bernstein operator over a simplex is defined as follows. Let
Sn, x=(Sn, x1

, ..., Sn, xk
) have a multinomial distribution with parameters

(n, x1 , ..., xk , 1&x1& } } } &xk), where x=(x1 , ..., xk) # 2k=the standard
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simplex. That is, 2k=[(x1 , ..., xk) : 0�xi�1, x1+ } } } +xk�1]. For a
continuous function f defined over 2k , the Bernstein operator is defined by

Bn, k( f, x)=:
j

f ( j�n) P(Sn, x=j),

where j=( j1 , ..., jk) consists of non-negative integers so that j1+ } } } +jk�n,
and

P(Sn, x=j )

=\ n
j1 , ..., jk , n&j1& } } } &jk+ (1&x1& } } } &xk)n&j1& } } } &jk `

k

i=1

x ji
i

is the multinomial density. We can view this and other such operators as

Ln, k( f, x)=Ef \S1

n
,

S2

n
, ...,

Sk

n +=Ef \1
n

:
n

i=1

Xi+ ,

where Xi=(X (1)
i , X (2)

i , ..., X (k)
i ), i=1, 2, ..., is a sequence of iid random

vectors. The reverse martingale method caries over to Rk (cf. [1]) and
provides the monotonicity of such operators when f is convex. However, by
using a special case of Theorem 1, we can say more without using expecta-
tions or the mutual independence of the random vectors. The following
theorem is a direct consequence of the inequalities in (4) when applied to
random vectors.

Theorem 7. Let f be convex function over a convex set K�Rk and let

Ln, k( f )=Ef \S1

n
,

S2

n
, ...,

Sk

n +=Ef \1
n

:
n

i=1

Xi+
be a sequence of functionals over K, where Xi is a sequence of K valued
random vectors. Then

f \ :
n+1

i=1

Xi�(n+1)+�
a.s. 1

\n+1
n +

:
1�i1< } } } <in�n+1

f \
Xi1

+ } } } +Xin

n + .

Furthermore, if Xi are exchangeable random vectors then Ln, k( f )�Ln+1, k( f ).

Remark. This result contains a number of classical multivariate
approximation operators such as the Bernstein polynomials over simplexes
(first proved in [7] by using direct calculations) and the multivariate
Baskakov operators. The standard proof involves the multivariate analog
of reverse martingale argument as provided in [1] recently. Theorem 7
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shows that, almost surely, we may compare the function values before even
taking the expectations. In fact, we could go one step further and define
sequentially convex functions over a convex subset K of Rm by having fk, n ,
as defined in (5), be convex in k=1, 2, ..., n for all points xi # K and all
positive integers n>2. For such functions, the above multivariate operators
will form a convex sequence of approximations. The tensor product
operators, on the other hand, can be handled without such extensions. The
main result in this direction is the following theorem. For notational con-
venience, we present the results for R2 only.

Theorem 8. Let Xi and Yj , i, j=1, 2, ..., be two sequences of random
variables taking values in respective intervals I and J. Consider the func-
tionals

Tn, m( f )=Ef \1
n

:
n

i=1

Xi ,
1
m

:
m

i=1

Yj+
when the expectations are well defined. Let f (x, y) be a convex function in
x for each fixed value of y # J. If [X1 , X2 , ...] are conditionally exchangeable
random variables given the random variables Y1 , Y2 , ..., Ym , then Tn, m( f )�
Tn+1, m( f ). And if f (x, y) is sequentially convex in x for each fixed y, then

Tn+2, m( f )&2Tn+1, m( f )+Tn, m( f )�0, n=1, 2, ... .

Proof. The proof follows from the fact that

f \ 1
n+1

:
n+1

i=1

Xi ,
1
m

:
m

i=1

Yj+
�
a.s. 1

\n+1
n +

:
1�i1< } } } <in�n+1

f \
Xi1

+Xi2
+ } } } +Xin

n
,

1
m

:
m

i=1

Yj+

when f (x, y) is convex in x for each y # J. Taking expectations gives the
first part. For the second part, the sequential convexity of f (x, y) for each
fixed y # J gives the corresponding inequality similar to (7). And taking
iterated expectations, first with respect to [Xi] given Y1 , Y2 , ..., Ym and
then over the Yj completes the proof. K

Remark. Our final result shows how to use the ideas of sampling
without replacement to cover results involving sampling with replacement.
Let L be a linear space, let K�L be a convex set, and let g : K � R be
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a convex function. Let x1 , x2 , ..., xn be some elements of K and let
p1 , p2 , ..., pn be positive numbers adding up to one. Define

gk, n(x, p)=:
i1

pi1
:
i2

pi2
} } } :

ik

pik
g \

xi1
+xi2

+ } } } +xik

k + .

In [24, p. 90, Theorem 3.21] we find the following inequalities:

:
n

i=1

pi g(xi)�gk, n�gk+1, n�g \ :
n

i=1

pixi+ , k=2, 3, ..., n&1. (8)

The following proof shows why this is also a special case of Theorem 1.

Proof of (8). Let X1 , X2 , ..., Xn be independent and identically dis-
tributed K valued random elements so that P(X1=xj)=pj , j=1, 2, ..., n.
And let Nk be independent of X1 , X2 , ..., Xn and let Nk be uniform over
[1, 2, ..., k]. Consider the composition random vector Wk=XNk

. Since,
P(Wk=xj)=pj , we see that for any k=2, 3, ..., n&1,

:
n

i=1

pi g(xi)=Eg(Wk)�E[ g(E(Wk | X1 , X2 , ..., Xk))]

=E { g \X1+ } } } +Xk

k +==gk, n(x, p)

�E { g \X1+ } } } +Xk+1

k+1 +==gk+1, n(x, p)

�g \E \X1+ } } } +Xk+1

k+1 ++=g \ :
n

i=1

pixi+ . K
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